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Introduction

Obesity has emerged as a significant global
public health challenge, affecting both developed and
developing nations due to economic growth and
lifestyle changes (Lee and Yoon, 2018; von Heesen,
2022; Mathis et al., 2023). Characterised by
excessive accumulation of white adipose tissue,
obesity disrupts energy balance, and is a major risk
factor for chronic diseases such as type 2 diabetes,
cardiovascular diseases (CVD), hypertension, and
certain cancers (Koliaki et al., 2019; Haidar and
Horwich, 2023; Mallah et al., 2023). The pro-
inflammatory and pro-thrombotic environments
induced by obesity exacerbate these conditions,
highlighting the wurgent need for effective
interventions (Mathew et al., 2008; Tian et al., 2022).

Food proteins play a crucial role as a source of
energy and amino acids, supporting normal growth,
life maintenance, and reproduction (Markoulli et al.,
2023). Apart from their nutritional value, food
proteins can also be digested by proteases to generate
peptides with specific biological activities, known as
bioactive peptides (Sotoudeh and Azizi, 2023;
Oliveira et al., 2024; Yuan et al., 2024; Moreira et al.,
2024). At present, although many reviews on
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bioactive peptides have been published, the
systematic and comprehensive review on exogenous
bioactive peptides (¢eBAPs) remain scarce. While
bioactive peptides have been extensively reviewed
for their metabolic benefits, eBAPs represent a
distinct and emerging subfield. Moreover, the
mechanisms by which eBAPs reduce fat deposition,
improve metabolic health, and alleviate obesity-
related diseases remain insufficiently understood.
Additionally, challenges such as peptide stability,
bioavailability, and clinical efficacy limit their
widespread application (Patil ez al., 2022; Ejike et al.,
2023). Therefore, the present review aimed to (1)
summarise the biological activities and physiological
regulatory functions of eBAPs in obesity and related
metabolic disorders; (2) evaluate the mechanisms
through which eBAPs exert their beneficial effects,
including modulation of lipid metabolism,
hypertension, and insulin signalling; and (3) identify
gaps in current research and propose future directions
for the development of eBAP-based interventions.
To develop the present review, established
scientific databases such as Scopus, PubMed, and
Web of Science were searched using the following
keywords: 'food proteins', 'bioactive peptides',
'exogenous bioactive peptides', 'obesity', 'adipose’,
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'disease’, 'cardiovascular disease', 'hypertension', and
'type 2 diabetes'. The present review then only
included articles published in English language, with
most of them being published over the last five years.

Comparison between endogenous BAPs and
exogenous BAPs (eBAPs)

Bioactive peptides are easily digested and
absorbed by the body, and have been found to play
roles in boosting immunity, regulating hormone
secretion, reducing blood pressure, and lowering lipid
levels (Patil et al., 2022; Acevedo-Juarez et al.,
2022). Bioactive peptides can be broadly categorised
into two groups: endogenous and exogenous
bioactive peptides (Yoshikawa, 2015; Dave et al.,
2021; Tanikawa et al., 2021). Endogenous bioactive
peptides are naturally released from precursor
proteins and secreted by cells. Whereas, exogenous
bioactive peptides (eBAPs) are derived through
industrial processes or are small molecular peptides
that are digested from protein hydrolysate by
endogenous intestinal enzymes (Abeer et al., 2021).
More precisely, endogenous bioactive peptides can be
defined as peptides produced from the human
proteome inside the “body proper”, that may either
play a role in physiological regulation or exert a
health benefit (Karelin et al., 1998), while e BAPs are
generated outside the “body proper” (Dave et al.,
2016).

The production of eBAPs from various
biological sources follows fundamentally similar
approaches, with three primary methodologies being
predominantly utilised: enzymatic hydrolysis,
chemical hydrolysis, and microbial fermentation.
Since most bioactive peptides are buried or encrypted
in the structure of mature proteins, the most common
and simple method for producing bioactive peptides
is enzymatic hydrolysis, especially by digestive
enzymes (Zambrowicz et al., 2013). Enzymatic
hydrolysis is the most favourable peptide production
approach due to its several advantages compared to
the other methods, such as high specificity, mild
conditions, lack of residual organic solvents and toxic
chemicals in the final peptide preparations, along
with the fact that food-grade enzymes-derived
bioactive peptides are commonly recognised as
GRAS (Generally Recognised as Safe) (Wang et al.,
2017; Ulug et al., 2021; Sridhar et al., 2021; Cunha
and Pintado, 2022). The use of gastrointestinal
enzymes to produce bioactive peptides makes it
possible to administer the resulting peptides orally

(Rdder et al., 2018). Nevertheless, enzymatic
hydrolysis has some drawbacks, including high cost
of enzymes, enzyme cleavage site specificity, control
of pH and temperature parameters to achieve
optimum hydrolysis, and low yield of final product.
Hence, there has been a need for alternative methods
(Tadesse and Emire, 2020). Conventionally,
bioactive peptides are produced from different food
sources (milk, egg, meat, marine sources, and plant)
by enzymatic hydrolysis and/or microbial
fermentation technologies (Cruz-Casas et al., 2021)
and/or  simulated  gastrointestinal  digestion
procedures. Plant-based meat eBAPs are obtained by
simulating gastrointestinal digestion, and then
hydrolysis with pepsin and pancreatin (Wang et al.,
2023a). Current industrial production of eBAPs
predominantly relies on three conventional
proteolytic enzymes (pepsin, trypsin, and papain),
which exhibit limited substrate specificity and
suboptimal yield efficiency. To address these
limitations, the development of customised
hydrolytic enzymes designed for specific peptide
sequences represents a critical research direction.
Strategic ~ optimisation  of  enzyme-substrate
combinations based on structural characteristics
would significantly improve both the production
yield and bioactive quality of eBAPs, thereby
enhancing their commercial viability and therapeutic
applications.

Chemical hydrolysis of proteins is the oldest
process for the generation of food-derived
biologically active peptides that involves the use of
acid or alkali to cleave the peptide bonds allowing the
release of peptides and free amino acids. Chemical
hydrolysis breaks down proteins using acids like
hydrochloric acid (Ashaolu, 2020) or bases such as
calcium, sodium, or potassium hydroxide (Alvarez-
Vinas et al., 2021). Despite being cost-effective and
rapid, chemical hydrolysis lacks precise control over
hydrolysate consistency, and leads to variations in
amino acid profiles due to non-specific hydrolysis
(Siddik et al., 2021). Although chemical hydrolysis is
widely used as a conventional technology, being
simple with low costs, it has several limitations,
including variable chemical compositions production
due to difficulties in process controlling. Besides, the
use of harsh chemicals and solvents under extreme
temperature and pH conditions often results in poor
nutritional qualities and low functionalities, as well as
environment pollution (Ulug et al., 2021). Microbial
fermentation is another approach to producing
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biologically active peptides from different sources
that is becoming attractive due to its GRAS status
(devoid of any pathogenicity and toxicity in humans)
and its relatively low cost compared to enzymatic
technology  (Tasdemir and  Sanlier, 2020;
Dominguez-Perez et al., 2020). Low peptide yield
and a lack of specificity in peptide formation are the
major disadvantages that impede microbial
fermentation from being industrially exploited for the
generation of peptides/protein hydrolysates endowed
with health-related benefits purposes (Manzoor ef al.,
2022). Current eBAP manufacturing continues to rely
predominantly on conventional production methods
(enzymatic/chemical hydrolysis and microbial
fermentation), highlighting a substantial innovation
deficit in this field. While these methodological
constraints reflect the inherent complexity of
bioactive peptide production, they simultaneously
underscore untapped opportunities for technological
breakthroughs. The development of next-generation
production platforms could fundamentally transform
manufacturing  paradigms by  simultaneously
enhancing production yields, product quality
consistency, and application scope, thereby
unlocking unprecedented commercial and therapeutic
value.

eBAPs and obesity

Obesity is characterised by pathological
changes in adipose tissue, which result in a state of
low-grade chronic inflammation throughout the body.
These changes include the abnormal accumulation of
pro-inflammatory white blood cells within adipose
tissue (El Meouchy et al., 2022). Adipose tissue is not
just a passive storage site for fat; it is a dynamic and
metabolically active endocrine organ (Karakurt and
Pir, 2023; Monsalve et al., 2023; Nikiforaki and
Marias, 2023). It plays a crucial role in storing and
releasing fatty acids and producing adipokines, which
are important in regulating energy balance and
glucose metabolism (Suryaningtyas and Je, 2023;
Banfi ef al., 2023). Research has indicated that when
used as functional food ingredients, eBAPs do not
accumulate in body tissues (Lordan et al., 2011).
These bioactive peptides can have local effects in the
gut by interacting with specific receptors or cells, or
they can pass through the intestinal epithelium and
enter the bloodstream, adsorbed by target tissues or
organs, leading to systemic effects in vivo (Miner-
Williams et al., 2014; Matsui, 2018; Xu et al., 2019;

Amigo and Hernandez-Ledesma, 2020). In recent
years, there has been a growing interest in using
eBAPs as both a source of nutrition and therapeutic
agents (Wang et al., 2023b; Ma et al., 2023;
Suryaningtyas and Je, 2023). These peptides have the
potential to be used as food additives or nutritional
supplements to alleviate and mitigate various chronic
diseases in humans. Currently, there are several
natural eBAPs that are being tested or have already
entered the market as dietary supplements or health
foods (Patil er al., 2022).

Comparing the different mechanisms of action
of eBAPs can provide valuable insights into their
potential role in preventing and treating obesity and
its associated metabolic changes (Hu et al., 2023;
Koirala et al., 2023; Liu et al., 2023a; Wang et al.,
2023b). To facilitate this comparison, Table 1
summarises the preparation methods, bioactive
components, animal (cell) models used in the past
three years, and the mechanisms of action for
preventing obesity.

Animal-derived eBAPs and obesity

This comprehensive overview will help in
understanding the diverse approaches and potential
benefits of eBAPs in combating obesity (Mellinkoff
et al., 1956; Froetschel et al., 2001; Nongonierma et
al.,2013; Mitkin et al.,2022). Indeed, eBAPs derived
from milk or dairy products have shown potential in
controlling body weight and obesity (Delgadillo-
Puga et al., 2020; Oztiirk et al., 2022; Koirala et al.,
2023; Suryaningtyas and Je, 2023). One specific
example is the milk hydrolytic peptide CHM-273S
(Mitkin et al., 2022; Pavshintsev et al., 2022), as
listed in Table 1. This peptide has demonstrated a
prominent anorexigenic effect in mice by inducing
the key mechanism of leptin signalling via STAT3 in
the hypothalamus, as shown in Figure 1. The results
of the study are indeed intriguing. Mice treated with
chronic administration of the milk hydrolytic peptide
CHM-273S exhibited significant weight loss, reduced
visceral fat pad weight, and a decrease in size of fat
cells. Notably, the effectiveness of CHM-273S was
found to be comparable to that of strychnine, a known
appetite  suppressant (Mitkin et al., 2022).
Nevertheless, the putative role of eBAP-modulated
leptin signalling pathways in mediating the observed
anti-obesity effects warrants systematic investigation.
The current evidence base remains limited by: (i) a
paucity of mechanistic in vitro studies characterising
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Table 1. Summary on roles and mechanisms of eBAPs in preventing obesity.

Source Preparation Bioactive Model Action
method component mechanism
Philippinarum . .
Rudit . B regulating the liver
hilbil liili;jtm and sucrose by Fermentation Kunming mice yel;pre?slion o%‘ enesV
pHinpp Bacillus natto for mixture £ P £

(Song et al., 2022)

24 h at 45°C

associated with lipolysis.

Corn

(Zhang et al., 2022;

Wei et al., 2022)

Commercial
purchase

Corn bioactive
peptides

Sprague Dawley
rats, LO2, 3T3-L1
cells

Increased the expression
of SIRT2/PPAR-a and
Nrfl/HO-2 pathways in
LO2 cells, and inhibited
the expression of key
adipogenesis regulators
C/EBPa, C/EBP,
PPARYy, and FABP4.

Spinach
(Kaneko et al.,
2022)

Pepsin-trypsin

YHIEPV

Male C57BL/6
and ddY mice

Blocked Epac-Rapl
signalling pathway and
decreased the level of
brain Rap1 in GTP-
bound active type.

Cattle
(Mitkin et al.,
2022)

HPLC/MS-MS

CHM-273S
peptides from
milk hydrolysate

Primary murine
fibroblasts, male
C57BL/6 mice,
and male Sprague
Dawley rats

STATS3 in the
hypothalamus as a key
mechanism for possible
effector-induced leptin
signalling. Induced Akt

Ser473 and Thr308
phosphorylated.

Jellyfish
Nemopilema
nomurai
(Ma et al., 2023)

Papain

Enzymatic
hydrolysate

3T3-L1
preadipocytes

Induced synergistic
remodelling of the
metabolic network of
3T3-L1 cells to prevent
lipid accumulation and
inhibited adipogenesis by
downregulating energy
metabolism.

Vitalmelon
(Guo et al., 2022)

Freeze-dried
vitalmelon fruits
were ground to a

powder and
passed through a

30-mesh sieve.

Edible
vitalmelon fruit
extract

3T3-L1
preadipocytes

Down-regulated of
PPARy and PPARY-
target genes LPL, CD36,
HMGCR, and L-FABP,
and inhibited the
differentiation of 3T3-L1
preadipocytes.

SIRT2: Sirtuin 2; PPAR-a: peroxisome proliferators-activated receptor a; Nrfl: nuclear respiratory factor-
1; HO-2: Heme oxygenase-2; LO1: human non-tumour hepatic cells; C/EBPa: recombinant human
CCAAT/enhancer binding protein alpha; C/EBPB: CCAAT enhancer binding protein beta; PPARYy:
peroxisome proliferator-activated receptor gamma; FABP4: fatty acid binding protein 4; Rapl: Ras-
proximate-1; STAT3: signal transducer and activator of transcription 3; LPL: lipoprotein lipase; CD36:
platelet glycoprotein 4; HMGCR: 3-hy-droxy-3-methyl glutaryl coenzyme A reductase; and L-FABP: liver
fatty acid binding protein.
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The source of eBAPs

Food protein

W & ﬁ

Enzymatic hydrolysis/fermentation

Active peptide fragments (eBAPs)

Oral/intestinal absorption

Circulatory system

> Adipose tissue regulation

@ PPARy, CEBP/a, SREBP1c! |

Lipogenesis l
@ AMPK/PPAR«, HSL!— Fatty acid oxidation t

(©) = Lipid droplet accumulation l
> Energy metabolism and inflammation
(@) NF-xB/TNF-a l — Inflammation of adipose tissue l

(@ Regulating leptin signal (ST,.\TSP"‘) — Leptin resislancel

! L—— Regulating appetite of central system

@®GLP-1, CCK! — satiety |

(@5-HT(2C) receptor l — Appetite signal l

Figure 1. Mechanism of eBAP intervention on obesity.

cellular responses, and (ii) insufficient in vivo
validation across relevant animal models. These
knowledge gaps preclude definitive elucidation of:
(a) the precise molecular mechanisms underlying
eBAPs' anti-adipogenic actions, and (b) their
regulatory effects on lipid homeostasis genes
(particularly the coordinated modulation of both
lipogenic [e.g., SREBP-1c and FAS] and lipolytic
[e.g., ATGL and HSL] targets). Additionally, eBAPs
derived from casein, as listed in Table 1, has been
shown to induce satiety through different
mechanisms. One such mechanism involves
stimulating the release of cholecystokinin (Froetschel
et al., 2001) (CCK) and glucagon-like peptide-1
(Jakubowicz and Froy, 2013) (GLP-1). GLP-1 is
known to play a crucial role in energy balance,
regulating blood sugar levels through its proliferative
action, and promoting satiety while reducing food
intake through its anorexic properties (Chang et al.,
2019). Furthermore, the stimulation of serotonin
receptors by casein eBAP indicates a potential for
suppressing appetite (Nongonierma et al., 2013).
When the concentration of amino acids increased and
blood sugar levels decreased, the administration of
casein eBAP, whether intravenous or oral, resulted in
a reduction in appetite (Mellinkoff et al., 1956).
Currently, research on casein eBAP has focused on its
potential to reduce fat deposition and chronic fat
inflammation (Liu et al., 2023a). However, the

specific mechanism underlying these effects is still
under investigation (Ejike et al., 2023).

A variety of marine eBAPs showed an
inhibitory effect on obesity (Song et al., 2022; Ma et
al., 2023). Ruditapes philippinarum eBAPs, as listed
in Table 1, significantly reduced body weight,
adipose tissue weight, lipid accumulation in the liver,
and plasma total cholesterol, triglyceride (TG), and
low-density lipoprotein (LDL) levels in mice.
Mechanism analysis has shown that Ruditapes
philippinarum eBAPs up-regulated the liver
lipolysis-related genes, such as hormone-sensitive
lipase, PPARq, and phosphorylated AMP-activated
protein kinase (p-AMPK), and down-regulated the
lipid synthesis gene, PPARY. In addition, Ruditapes
philippinarum  eBAPs reduced obesity and
hyperlipidaemia by regulating the disordered
composition of intestinal microbiota, increasing the
microbiota abundance associated with the synthesis
of short-chain fatty acids, controlling the microbiota
associated with intestinal inflammation, and exerting
weight loss and lipid-lowering activities (Song et al.,
2022). The eBAPs from jellyfish Nemopilema
nomurai, as listed in Table 1, down-regulated
glycerolipids, and up-regulated sphingolipid
metabolism and sphingolipid signalling pathways. In
addition, ATP levels in the tricarboxylic acid cycle
and oxidative phosphorylation pathways were
significantly reduced, which was associated with
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glucagon signalling pathways and fatty acid
synthesis. To date, research has merely demonstrated
correlative associations between eBAP
administration and metabolic improvements, while
failing to mechanistically characterise their
interactions with critical pathway components at both
genomic and proteomic levels. This fundamental gap
in mechanistic understanding substantially impedes
our ability to decipher eBAPs' mode of action and
therapeutic potential. The lipid-lowering activity of
pickled jellyfish Nemopilema nomurai eBAPs might
be related to lipid and energy metabolism in 3T3-T1
cells; ATP might be a potential lipid-lowering
biomarker with a change factor of 0.534 (Ma et al.,
2023). eBAPs exhibit considerable therapeutic
promise for obesity management due to their capacity
to simultaneously modulate multiple pathological
pathways underlying obesity. To advance this field,
future  investigations should prioritise: (1)
establishing robust lipidomic biomarkers that can
serve as sensitive indicators of metabolic response,
and (2) developing analytical frameworks that
integrate these biomarkers to elucidate eBAP-
mediated regulation of lipid homeostasis at molecular
levels.

Plant-derived eBAPs and obesity

Some familiar crop sources of eBAPs also have
fat-reducing  effects (Tsou et al., 2013;
Peighambardoust et al., 2021; Nagaoka et al., 2021;
Kaneko et al., 2022; Zhang et al., 2022; Wei et al.,
2022; Wu et al., 2022; Yi et al., 2023). Previous
studies in our laboratory showed that corn peptides
(CPs), as listed in Table 1, inhibited the adipose
differentiation and lipid accumulation of 3T3-L1
preadipocytes. Oral CPs decreased serum TG content,
epididymal fat weight, abnormal hepatic fat drop
accumulation, and CCAAT/enhancer-binding protein
o (C/EBPa) expression. Serum levels of total
cholesterol (TC), TG, and LDL were decreased, and
liver lipid droplet accumulation and epididymal
adipocyte hypertrophy were inhibited. Additionally,
this combination inhibited the expression of
transcription factors, C/EBPa, C/EBPJ, and PPARY,
and adipogenic factor FABP4 in mice (Zhang et al.,
2022). Recently, another in vivo study on corn
peptides (Wei et al., 2022) showed that CPs could
effectively reduce the rate of weight gain, lipid levels,
and liver index, and increase glucose tolerance. The
results of in vitro experiments showed that CPs could
effectively reduce the accumulation of lipids in LO2

cells, inhibit the accumulation of reactive oxygen
species (ROS), and significantly reduce the
accumulation of liver lipids in vitro and in vivo. CPs
also decreased the sterol regulatory element binding
protein-1c (SREBP1c¢) expression in LO2 cells.

Meanwhile, the expression of SIRT1/PPARa
and Nrf2/HO-1 pathways increased in LO2 cells after
pre-treatment with CPs, indicating that CPs could
significantly reduce fatty liver injury induced by high
fat, regulate insulin sensitivity, and reduce the
production of ROS (Wei et al., 2022). The lipid-
modulating efficacy of eBAPs exhibits substantial
source- and dose-dependent variability, necessitating
systematic evaluation of the potential safety
implications associated with these pharmacological
inconsistencies. LC-MS/MS analysis of soybean
hydrolysate identified three lipopolysaccharide-
stimulating peptides (Tsou et al., 2013) (ILL, LLL,
and VHVYV), which might enhance the stimulating
effect of lipopolysaccharide, and would not be
affected by gastrointestinal protease activity.
Importantly, these peptides possess lipolysis-
stimulating activity (Tsou et al., 2013). While in vitro
analyses have demonstrated that pepsin-mediated
proteolysis preserved the lipolytic function of these
three eBAPs, their biological efficacy under
physiological conditions requires further validation
through rigorous in vivo studies.

Studies have demonstrated that soybean
eBAPs exhibited inhibitory effects on metabolic
regulation and physiological properties (Nagaoka et
al., 2021; Peighambardoust et al., 2021; Kaneko et
al., 2022). These effects include reducing cholesterol
and triglyceride levels, improving lipid metabolism,
combating obesity, inhibiting fatty acid synthase
(FAS), and exerting anti-diabetic effects (Nagaoka et
al., 2021). Additionally, soybean eBAPs have been
found to be more effective than proteins in reducing
total blood cholesterol levels (Peighambardoust et al.,
2021). The underlying mechanism of this
phenomenon, specifically whether it derives from
eBAPs' intrinsic structural specificity or is mediated
by matrix-related effects, requires systematic
investigation through well-controlled experimental
approaches. YHIEPV, an active peptide derived from
spinach eBAPs, as listed in Table 1, demonstrated its
ability to enhance the phosphorylation of STAT3 in
hypothalamic slice cultures in vitro, which is induced
by leptin. Furthermore, YHIEPV was found to
alleviate the decrease in leptin responsiveness caused
by palmitic acid. In obese mice, YHIEPV restored
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cellular leptin sensitivity and the levels of pro-
inflammatory-related factors, including /LIf and
Socs-3, in the hypothalamus. YHIEPV was found to
counteract cellular leptin resistance caused by
forskolin, which activates Epac-Rapl signalling.
Additionally, YHIEPV decreased the level of the
active GTP-bound form of Rap1 in the brains of obese
mice. This peptide also enhanced neural leptin
responsiveness, and reduced body weight gain in
mice with dietary obesity (Kaneko et al., 2022).
YHIEPV demonstrates pleiotropic regulatory effects
across multiple metabolic pathways; however, its
precise mechanisms of action remain inadequately
characterised at both the cellular and organismal
levels. Although accumulating evidence supports the
therapeutic promise of eBAPs for obesity
management, their modes of action diverge
fundamentally from conventional pharmacological
interventions. To advance this field, future
investigations  should integrate  multi-omics
approaches (including proteomic, metabolomic, and
transcriptomic  analyses) to comprehensively
delineate the molecular networks through which
eBAPs exert their anti-obesity effects, thereby
enabling the rational design of targeted therapies for
obesity and its metabolic comorbidities.

Roles of eBAPs in obesity-related diseases
eBAPs and cardiovascular disease

Cardiovascular disease (CVD) encompass a
range of heart and blood vessel conditions, including
deep vein thrombosis, pulmonary embolism, stroke,
ischemic heart disease (Yang et al., 2017; Rafiq et al.,
2017). These diseases pose a significant global public
health challenge, and are often caused by varying
levels of blood clotting in the blood vessels (Zhou et
al., 2022; Goldsborough et al., 2022; Chandika et al.,
2022). As a result, there is an increasing need for
research and development of foods that contain
anticoagulants and antithrombotic agents. In addition
to preventive and therapeutic drugs, there has been a
growing emphasis on dietary eBAPs in promoting
cardiovascular health (Cermefio et al.,, 2019;
Rengasamy et al., 2019; Chernukha et al., 2021; Ejike
et al., 2023). Among these natural peptides, hirudin is
known for its potent thrombin inhibitory activity
(Cheng et al., 2021). However, it is also associated
with several side effects, including allergies,
bleeding, and poisoning, as it is derived from the
saliva or venom of blood-eating animals (Cheng

et al., 2021). Therefore, it is crucial to explore new
anticoagulants with minimal side effects for the
prevention of thromboembolism.

A newly discovered anticoagulant eBAP
(Cheng et al., 2018), TARNEANVNIY, has been
isolated, purified, and identified from oysters. This
eBAP effectively prolongs the activated partial
thromboplastin time (aPTT) and the prothrombin
time (PT). Its amino acid sequence bears resemblance
to the C-terminal fragment (DFEEIPEEYLQ) of
hirudin, a highly efficient thrombin inhibitor
previously mentioned. The oyster-derived eBAP
TARNEANVNIY specifically inhibits the activity of
thrombin (Cheng et al., 2018) as shown in Figure 2,
and effectively reduces the occurrence of CVD.
Recently, another novel anticoagulant heptapeptide
(Cheng et al., 2021), P-3-CG, has been isolated from
the pepsin hydrolysate of oysters. P-3-CG competes
with fibrinogen for the antithrombin active domain
through a spontaneous exothermic reaction driven by
entropy. The Lys7 residue of P-3-CG strongly
anchors the thrombin S1 bag, inhibiting the binding
of fibrinogen to thrombin, and blocking the
conversion of fibrinogen to fibrin. This leads to an
extended fibrinogen coagulation time of 27.55
seconds. The enzymolysis activity of thrombin is
significantly influenced by the reaction time and
concentration of P-3-CG. Additionally, P-3-CG
significantly prolongs the in vitro and in vivo
activated aPTT (Cheng et al., 2021), as shown in
Figure 2. These findings suggest that P-3-CG, as an
alternative food-derived anticoagulant peptide, could
be utilised for thrombosis prevention.

The potential applications of scorpion eBAPs
in functional foods and anticoagulant drugs are
significant, as they can help maintain blood flow, and
prevent atherosclerosis (Ren er al., 2014). Potato
eBAPs have been found to protect heart tissue by
activating autophagy and mitochondrial biogenesis
pathways, which in turn alleviates cardiac cell
apoptosis in spontaneously hypertensive rat models
(Lin et al., 2020). Soy eBAPs, on the other hand,
effectively reduced blood cholesterol levels and LDL,
as well as lipid accumulation, by regulating bile acid
reabsorption in the digestive system or organs. This
makes soy eBAPs a promising option for the
prevention and treatment of atherosclerosis (Caponio
et al., 2021). Future investigations should employ
integrated approaches to systematically elucidate: (1)
the precise molecular mechanisms through which
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Figure 2. Anticoagulant mechanism of eBAPs.

soybean-derived eBAPs regulate atherosclerotic
pathways; and (2) their downstream targets in lipid
homeostasis ~ modulation.  This  mechanistic
understanding will be critical for enabling clinical
translation and optimising industrial-scale production

of soybean eBAP-based functional ingredients.

eBAPs and hypertension

Numerous types of food proteins, including
milk, fish, meat, eggs, and various vegetables, have
been a source of anti-hypertensive peptides (Fahmi et
al., 2004; Zhao et al., 2009; Hernandez-Ledesma et
al., 2011). These peptides exert their effects by
inhibiting renin or angiotensin-converting enzyme
(ACE) activity, as shown in Figure 3. Among the
different food sources, dairy eBAPs have been
extensively studied as an anti-hypertensive peptide.
Additionally, marine eBAPs have garnered
significant interest among researchers (Liu et al.,
2023b; Chen et al., 2024; Patil et al., 2024; Saraswat
and Chugh, 2024). It has been observed that several
marine eBAPs inhibited the activities of ACE in

spontaneously hypertensive rats (Fahmi et al., 2004;
Zhao et al., 2009). Generally, the administration of
marine eBAPs (10 mg/kg) orally leads to an average
decreased of 21 - 25 mmHg in systolic blood
pressure. The antihypertensive effect of the blood
pressure-lowering eBAPs is comparable to that of
captopril, a widely available antihypertensive
medication (Lee et al., 2010). Furthermore, the rats
did not exhibit any adverse effects after consuming
the eBAPs that lowered blood pressure. However, the
therapeutic potential of marine-derived eBAPs as
antihypertensive agents remains to be clinically
validated, as no randomised controlled trials have
been conducted to date. Presently, several natural
ACE inhibitor products derived from marine eBAPs
have been introduced as dietary supplements to
support optional blood pressure levels (Oh et al.,
2020; Im and Lee 2023; Lee et al., 2023). Examples
of these products include bonito peptides,
Vasotensin®, and PeptAce™ fish peptides, all of
which are derived from bonito muscle (Chan et al.,
2022; Xu et al., 2022) (katsuobushi). The primary
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Figure 3. Roles and mechanisms of eBAPs in regulating blood pressure. Drawn by www.figdraw.com.

active oligopeptide found in bonito is LKPNM, which
undergoes conversion to LKP by ACE, as shown in
Figure 3. This katsuobushi oligopeptide has the
ability to maintain healthy blood pressure levels.
When administered orally, LKPNM exhibited long-
lasting and dose-dependent antihypertensive effects
in spontaneously hypertensive rats. Clinical studies
have been shown that it did not appear to cause any
side effects, possibly due to its different mechanisms
of ACE inhibition compared to drugs (Fujita et al.,
2001). Seki (2016) isolated 14 highly inhibitory
peptides from the bonito peptide, and demonstrated
their potent inhibitory and antihypertensive activities
both in vitro and in vivo. Moreover, a human study
was conducted, which revealed no adverse effects
based on physician interviews, subjective symptoms,
and the absence of drug-specific dry cough.
Additionally, haematology and blood biochemistry
tests did not uncover any safety concerns. These
findings indicated that the peptide could be utilised as
a functional food ingredient with a recommended
daily intake of 125 mg (Seki, 2016). Furthermore,
cricket eBAPs have the ability to inhibit the activities
of ACE, a-glucosidase, and a-amylase, thereby
reducing inflammation and hypertension (Hall and
Liceaga, 2020). Scalable production of this peptide
currently faces significant technological constraints.
In addition, comparative functional analyses of
eBAPs across different cricket species remain to be
systematically conducted to elucidate potential
bioactivity variations.

Various commercial anti-hypertensive
products have been developed (Hossain et al., 2020;
Kaur et al., 2023), including peptide C12, which
contains a milk-derived eBAP (FFVAPFPGVFGK).
This product has shown the ability to lower blood
pressure in individuals with pre-hypertension
(borderline hypertension) (Cadée et al., 2007), and
may have a preventive role in hypertension.
Importantly, C12 peptide has been found to be well-
tolerated, with no reported adverse effects such as dry
cough, skin issues, or gastrointestinal symptoms.
These findings highlighted the safety and
effectiveness of C12 peptide as a blood pressure-
lowering ingredient for human consumption. While
antihypertensive peptides are not expected to replace
traditional medications in the near future, the ongoing
research and development of novel and appealing
functional foods remains crucial.

eBAPs and type 2 diabetes

Type 2 diabetes is a complex condition
influenced by multiple factors (Mitkin ef al., 2022;
Wuetal., 2022; Yiet al., 2023; Ibrahim et al., 2023).
To address this, various anti-diabetic eBAPs derived
from functional foods have been utilised in the
development of anti-diabetic supplements. In an
animal model of metabolic disease, the e BAP CHM-
273S demonstrated the ability to improve glucose
intolerance and insulin resistance in hepatocytes of
rats fed a high-sucrose diet (Mitkin er al., 2022;
Pavshintsev et al., 2022). Furthermore, CHM-273S
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was found to induce the phosphorylation of protein
kinase B at Ser473 and Thr308. In a murine model of
type 2 diabetes, CHM-273S effectively mitigated
high-fat diet-induced hyperglycaemia and insulin
resistance, while also reducing low-grade
inflammation by decreasing serum tumour necrosis
factor a levels. Additionally, soybean eBAP was
shown to activate the p-Akt/GLUT4 signalling
pathway, thereby reducing insulin resistance in 3T3-
L1 adipocytes (Wu et al., 2022; Yi et al., 2023). Yam
(AVIAIMF and GPADPF) and taro (NGDF and
NGNW) have been identified as sources of anti-
diabetic eBAPs. These peptides have demonstrated a
higher inhibitory activity against dipeptidyl peptidase
IV (DPP-1V) compared to vegliptin, with NGDF
exhibiting the highest activity, as shown in Figure 4.
AVIAIMF, GPADPF, and NGNW have also shown
significantly inhibitory effects on the formation of
advanced glycation end products (AGEs) induced by
methylglyoxal. Additionally, AVIAIMF and NGNW
have exhibited oxygen radical scavenging (ORAC)
activity. These peptides have also demonstrated
significant nitric oxide clearance activity in mouse
macrophages (RAW 264.7) cells, without causing
cytotoxicity. Overall, AVIAIMF, GPADPF, and

Q

sIngest food

Gastrointestinal tract

Incretin inactivation

bioactive peptides

NGNW  possess multifunctional potential in
combating type 2 diabetes, and have the potential to
be utilised as anti-diabetic peptides in functional
foods for diabetes prevention (Ibrahim ef al., 2023).
The administration of clam eBAPs has shown
significant improvement in glucose tolerance
abnormalities and reduction in the mRNA expression
of liver enzymes related to gluconeogenesis and
lipogenesis in obesogenic wild-type mice (Kim et al.,
2022). Peptides VLP, LLP, LL, and LL derived from
peas have been found to regulate insulin-induced
glucose metabolism in IR-HepG2 cells through the
IRS-1/PI3K/AKT and p38MAPK  signalling
pathways (Zhu et al., 2020). Rats with metabolic
syndrome experienced a slower rate of weight gain
when consuming egg eBAPs, although their food
intake remained unchanged (Gewehr et al., 2020).
eBAPs exhibit their anti-diabetic potential through
various mechanisms, include the inhibition of
digestive enzymes, control of DPP-IV, reduction of
blood sugar levels, and enhancement of insulin
uptake (Kehinde and Sharma, 2020), as shown in
Figure 4. Currently, there is ongoing screening and
identification of various anti-glyco peptides.

Secretion o
insulin

Carbohydrate
Metabolism

Control

blood
glucose

Glycogenolysis
Gluconeggenesis

Glucagon
secretion

Exogenous

Figure 4. Roles and mechanisms of eBAPs in controlling blood glucose. Drawn by www.figdraw.com.

Conclusion

The present review discussed the biological
activity of eBAPs and their physiological regulation
on obesity and obesity-related diseases. However, the
specific mechanism of reducing fat deposition by
eBAPs remains to be studied further. In the future,
eBAPs, which can reduce fat deposition and improve

metabolic diseases, should be widely screened in
daily food. Peptide drugs have garnered significant
attention in the medical and pharmaceutical industries
due to their rich nutrient profiles, diverse health
benefits, and high safety with minimal side effects.
eBAPs are a functional component with great
potential for the development of functional products
and therapeutic drugs. eBAPs are also good candidate
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for reducing obesity and obesity-related diseases such
as cardiovascular disease, hypertension, and diabetes.
At the same time, new eBAPs are constantly being
identified from foods or other animal proteins,
opening up a vast space for the peptide market.
Compared to proteins, eBAPs have greater benefits,
more diverse ways to obtain, and relatively safe, but
at the same time, the production and
commercialisation of eBAPs and their products face
great challenges. The bioactive functions of eBAPs
and their clinical and safety evaluation as a health
food are critical. Most peptide drugs need to be
injected into the body, and there are specific
requirements for how they are ingested, so eBAPs are
unlikely to replace traditional drugs anytime soon.

New eBAPs are still waiting to be discovered
and explored, and there are still significant limitations
to their development. At present, most of the research
on eBAPs is still in the laboratory stage, even though
they have broad applications as functional foods and
medicines. Chemical modification of the obtained
eBAPs structure can be considered to improve their
activity and make their performance more stable,
which is conducive to market development and
utilisation. However, the relationship between
structural properties and functional activity has not
been fully elucidated. eBAPs have different effects in
different molecular weight ranges, and they can be
obtained by different hydrolysis methods with
specific functions. Although there are still many
problems with the application of eBAPs in the
treatment of human diseases. Some toxic and
sensitising active peptides causing harm to the human
body, commercially produced eBAPs lacking quality
stability between batches, and human gastrointestinal
digestion and rapid metabolism of plasma, liver, and
kidney make the efficacy of eBAPs in vivo not
guaranteed (poor stability), as well as other problems
which limit the development of polypeptides. In the
future, we can conduct extensive research on eBAPs
to improve the system.
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